Акцепторная проводимость схема

акцепторная проводимость схема
Например, для кремния акцепторной примесью является индий с валентностью п = 3. Каждый атом индия приведет к образованию лишней «дырки». Принцип действия большинства полупроводниковых приборов основан на свойствах р—n-перехода. При свободных механических колебаниях не­избежно происходит потеря энергии на преодоление сил сопротивления. При добавлении такой примеси в полупроводнике образуется лишнее количество «ды­рок». Проводимость будет «дырочной», а полупро­водник называют полупроводником p-типа. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается. Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения. Именно с позиций донорно-акцепторного механизма описывается образование локализованных ковалентных связей в молекулах и молекулярных ионах комплексных (координационных) соединений: связь формируется за счёт неподелённой пары электронов лиганда и свободной орбитали атома-комплексообразователя.


Так, введение примеси бора в количестве 1 атом на сто тысяч атомов кремния уменьшает удельное электрическое сопротивление кремния приблизительно в тысячу раз, а примесь одного атома индия на 108 — 109 атомов германия уменьшает удельное электрическое сопротивление германия в миллионы раз. Примесной проводимостью полупроводников называется проводимость, обусловленная наличием примесей в полупроводнике. Возможность управления удельным сопротивлением благодаря введению примесей используется в полупроводниковых приборах.

Дополнительная энергия, которая должна быть затрачена, чтобы разорвать ковалентную связь и сделать электрон свободным, называется энергией активации. Полупроводниковые соединения делят на несколько типов: простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08·10−19 Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический металлический корпус.

Похожие записи: